Purification from pig kidney of a microsomal cytochrome P₄₅₀ catalyzing 1α -hydroxylation of 25-hydroxyvitamin D_3

Eva Axén*

Division of Biochemistry, Department of Pharmaceutical Biosciences, University of Uppsala, Box 578, S-751 23 Uppsala, Sweden Received 6 October 1995

Abstract A cytochrome P_{450} catalyzing 1α -hydroxylation of 25hydroxyvitamin D₃ was purified from pig kidney microsomes. The enzyme preparation showed one protein band on gel electrophoresis with apparent M_r of 52,500 and a specific cytochrome P₄₅₀ content of 10.7 nmol/mg of protein. The 25-hydroxyvitamin D₃ 1α-hydroxylase copurified with the vitamin D₃ 25-hydroxylase during purification. A cytochrome P_{450} catalyzing 1α -hydroxylation was purified also from liver microsomes. The apparently homogeneous enzyme showed the same catalytic properties and apparent M, as the kidney enzyme. The results of the present communication demonstrate the presence in kidney of a previously unknown microsomal 1α -hydroxylase in addition to the assumed specific mitochondrial 1α -hydroxylase. The possibility that microsomal 1α -hydroxylation in pig kidney and liver is catalyzed by the previously described porcine microsomal vitamin D 25-hydroxylase(s) is discussed.

Key words: Cytochrome P₄₅₀; 25-Hydroxyvitamin D₃ 1α -hydroxylase; Renal 1α -hydroxylation;

Hepatic 1α-hydroxylation; Microsomal 1α-hydroxylation

1. Introduction

The activation of vitamin D_3 to its hormonal form, $1\alpha,25$ dihydroxyvitamin D₃, involves an initial 25-hydroxylation in the liver. The subsequent 1α-hydroxylation of 25-hydroxyvitumin D₃ is thought to be catalyzed mainly by a mitochondrial cytochrome P₄₅₀ in kidney [1-5]. A lot of effort trying to purify and characterize the mitochondrial 1α-hydroxylase in kidney has been made — so far without success [4,6-9]. There are no reports concerning a possible 1α-hydroxylation of 25-hydroxyvitamin D₃ in the microsomal fraction of the kidney. Extrarenal microsomal 1α-hydroxylase activity towards 25-hydroxyvitamin D₃ has been reported [5,10,11]. Hollis [11] found 1α-hydroxylase activity both in the microsomal and the mitochondrial fractions of pig liver homogenate. None of these α -hydroxylases was further purified or characterized [11]. We have recently shown that CYP27, a mitochondrial sterol 27hydroxylase, is responsible for the main 1α -hydroxylation of 25-hydroxyvitamin D₃ in the mitochondrial fraction of the liver [12]. CYP27 is present also in kidney [13]. Another example of vitamin D hydroxylating cytochrome P₄₅₀ that is present in both liver and kidney is the porcine microsomal vitamin D 25-hycroxylase(s) [14,15]. The primary aim of this report was to study the presence of possible 25-hydroxyvitamin D₃ 1α-hydroxylase in the microsomal fraction of kidney. A kidney microsomal cytochrome P_{450} catalyzing 1α -hydroxylation was

*Corresponding author. Fax: (46) (18) 55-8778.

purified to apparent homogeneity. For reasons of comparison also the liver microsomal cytochrome P₄₅₀ catalyzing 1α-hydroxylation was purified and studied.

2. Materials and methods

2.1. Chemicals and other materials

25-Hydroxy[23,24(n)- 3 H]vitamin D₃ (105.5 Ci/mmol) and 1 α ,25dihydroxy-[23,24(n)-3H]vitamin D₃ (91.4 Ci/mmol) were obtained from Amersham Int. (Amersham, Bucks., UK). Unlabeled vitamin D₃ and 25-hydroxyvitamin D, were obtained from Sigma Chemical Co. and Solvay Duphar BV, respectively. Ketoconazole and 1,2-dianilinoethane were obtained from Division of Janssen Pharmaceutica NV and Sigma Chemical Co., respectively. Hydroxylapatite (Bio-Gel HTP) was from Bio-Rad. Hydroxylapatite was mixed with an equal amount (w/w) of Whatman CF-1 cellulose powder before chromatography. Octylamine-Sepharose 4B was prepared by coupling 1,8-diamino-octane to CNBr-Sepharose 4B (Pharmacia). Q-Sepharose fast flow and S-Sepharose fast flow were obtained from Pharmacia. Emulgen 913 was obtained from Kao Chemicals, Tokyo, Japan. The remaining chemicals were reagent grade. Livers and kidneys from castrated, otherwise untreated, 6month-old male pigs were from the local slaughter house.

2.2. Purification of enzymes

Microsomes and cytochrome P_{450} from pig kidney and liver were prepared, cholate solubilized, fractionated with poly(ethylene)glycol 6000, applied to octylamine-Sepharose, hydroxylapatite and anion exchange chromatography as described [15] except that the hydroxylapatite was eluted with 300 mM phosphate in the kidney preparations. Enzyme activity was followed in all purification steps, including the side fractions. The fractions with the major part of the 1α-hydroxylase activity and the highest specific activity were pooled and further purified. 1\alpha-Hydroxylase activity was found also in the side fractions. The ratio between the three activities followed, i.e. the 1α - and 26(27)hydroxylase activities towards 25-hydroxyvitamin D₃ and the 25-hydroxylase avtivity towards vitamin D3, was around the same in all fractions, including the side fractions not chosen for further purifica-

NADPH-cytochrome P₄₅₀ reductase was prepared from pig liver microsomes as described by Yasukochi and Masters [16].

Ferredoxin and ferredoxin reductase from bovine adrenal mitochondria were prepared as described previously [17].

2.3. Incubation procedure and analysis of enzymatically formed products Incubations were performed and analyzed as described previously [15]. The incubation time was 60 min, the concentration of substrate was 62.5 μ M and of cytochrome P₄₅₀ 0.25 μ M. The enzymatically produced 1α,25-dihydroxyvitamin D₃ was identified by combined gas chromatography-mass spectrometry.

2.4. Other methods

Electrophoresis, silver staining, protein and cytochrome P₄₅₀ determinations were performed as described previously [15,18,19].

3. Results

3.1. Purification of kidney microsomal cytochrome P_{450} catalyzing 1α -hydroxylation of 25-hydroxyvitamin D_1 Initial experiments were performed with partially purified

Table 1 Purification from pig kidneys of microsomal cytochrome P_{450} catalyzing 1α -hydroxylation of 25-hydroxyvitamin D_3

	Cytochrome P ₄₅₀ (nmol·mg of protein ⁻¹)	25-Hydroxyvitamin D ₃		Vitamin D ₃
		1α-Hydroxylation (pmol·min ⁻¹ ·mg of protein ⁻¹)	26(27)-Hydroxylation (pmol·min ⁻¹ ·mg of protein ⁻¹)	25-Hydroxylation (pmol·min ⁻¹ ·mg of protein ⁻¹)
Microsomes	N.D.*	≤0.2	≤0.2	≤0.2
Octylamine-Sepharose	0.4	0.6	3.5	1.4
Hydroxylapatite (300 mM phosphate eluate)	2.2	4.1	43.4	33.8
Q-Sepharose (nonbound fraction)	3.4	14.6	75.1	168.0
S-Sepharose (0 mM sodium acetate eluate)	10.7	53.5	283.6	661.3

Details of the purification and incubation procedures are given in section 2.

cytochrome P₄₅₀ prepared by chromatography of solubilized microsomal protein on octylamine-Sepharose and hydroxylapatite. Incubation of partially purified cytochrome P_{450} from pig kidney microsomes resulted in formation of 1α,25-dihydroxyvitamin D₃ from 25-hydroxyvitamin D₃. In addition, incubations of 25-hydroxyvitamin D₃ resulted in the formation of another product with retention times on both the straight and reversed HPLC steps identical with 25,26-dihydroxyvitamin D₃. The stereochemistry at C-25 could not be determined with the methods used. The partially purified cytochrome P₄₅₀ also catalyzed 25-hydroxylation of vitamin D₃. On the basis of these results, purification was carried out and the activities in all purification steps, including the side fractions were analyzed. The 1α -hydroxylase activity towards 25-hydroxyvitamin D_3 copurified with the 26(27)-hydroxylase activity towards 25-hydroxyvitamin D₃ as well as the 25-hydroxylase activity towards D₃ (Table 1). The purified enzyme fraction showed one protein band on SDS-PAGE, corresponding to an apparent M_r of 52,500 (Fig. 1A). It had a specific cytochrome P₄₅₀ content of 10.7 nmol·mg of protein⁻¹. The 1α-hydroxylase activity towards 25-hydroxyvitamin D₃ was 5.0 pmol·nmol cytochrome $P_{450}^{-1} \cdot min^{-1}$, the 26(27)-hydroxylase activity towards 25-

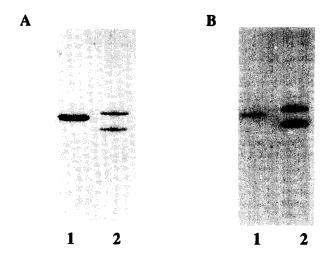


Fig. 1. SDS-PAGE of purified microsomal cytochromes P_{450} from pig kidney (A) and liver (B). (A) Lane 1 = purified 1α -hydroxylase from kidney (3 μ g); lane 2 = a mixture of cytochrome P_{450} IA2 (55 kDa) and cytochrome P_{450} IIB4 (48 kDa) from rabbit liver microsomes used as M_r standards (1 μ g of each). (B) Lane 1 = purified 1α -hydroxylase from liver (0.5 μ g); lane 2 = standards as in (A). The electrophoresis and staining were performed as described in [15].

hydroxyvitamin D_3 26.5 pmol·nmol cytochrome $P_{450}^{-1} \cdot min^{-1}$ and the 25-hydroxlase activity towards D₃ 61.8 pmol·nmol cytochrome $P_{450}^{-1} \cdot min^{-1}$. To exclude the possibility that $1\alpha,25$ -dihydroxyvitamin D₃ was formed by nonenzymatical, free radical reactions [5], a series of experiments was performed. The 1α hydroxylase activity in the purified fraction was unaffected by 1,2-dianilinoethane (10 μ M) and was inhibited to about 80% by ketoconazole (300 μ M). The activity was dependent on microsomal NADPH-cytochrome P₄₅₀ reductase. The microsomal NADPH-cytochrome P₄₅₀ reductase could not be replaced by the mitochondrial electron-transport system involving ferredoxin and ferredoxin reductase. The identity of $1\alpha,25$ -dihydroxyvitamin D₃ produced was confirmed by combined gas chromatography-mass spectrometry. The amount of purified 1α-hydroxylating cytochrome P₄₅₀ recovered from 1 kg of kidney tissue was 8 nmol.

3.2. Purification of liver microsomal cytochrome P_{450} catalyzing 1α -hydroxylation of 25-hydroxyvitamin D_3

Purification of liver microsomal 1α-hydroxylase resulted in a similar purification profile and product formation as in kidney microsomes (Table 2). Thus, the 1α -hydroxylase activity towards 25-hydroxyvitamin D₃ copurified with the 26(27)-hydroxylase activity towards 25-hydroxyvitamin D₃ as well as the 25-hydroxylase activity towards vitamin D₃. The activities were analyzed in all purification steps, including the side fractions. The final enzyme fraction showed one protein band on SDS-PAGE, corresponding to an apparent M_r of 52,500 (Fig. 1B). The specific cytochrome P₄₅₀ content was 13.0 nmol·mg of protein⁻¹. The 1α-hydroxylase activity towards 25-hydroxyvitamin D_3 was 7.9 pmol·nmol cytochrome P_{450}^{-1} ·min⁻¹, the 26(27)-hydroxylase activity towards 25-hydroxyvitamin D₃ 36.0 pmol·nmol cytochrome P_{450}^{-1} ·min⁻¹ and the 25-hydroxylase activity towards vitamin D₃ 284.3 pmol·nmol cytochrome $P_{450}^{-1} \cdot min^{-1}$. The amount of purified 1α -hydroxylating cytochrome P₄₅₀ recovered from 1 kg of liver tissue was 218 nmol. In a separate SDS-PAGE experiment (not shown), the liver and kidney enzymes were found to have the same apparent M_r as the previously purified vitamin D 25-hydroxylase from liver microsomes [15].

4. Discussion

The results of the present communication show the presence in pig kidney of a microsomal cytochrome P_{450} active in the 1α -hydroxylation of 25-hydroxyvitamin D_3 . In contrast to

^{*}N.D., not determined.

Table 2 Purification from pig liver of microsomal cytochrome P_{450} catalyzing 1α -hydroxylation of 25-hydroxyvitamin D_3

	Cytochrome P ₄₅₀ (nmol·mg of protein ⁻¹)	25-Hydroxyvitamin D ₃		Vitamin D ₃
		1α-Hydroxylation (pmol·min ⁻¹ ·mg of protein ⁻¹)	26(27)-Hydroxylation (pmol·min ⁻¹ ·mg of protein ⁻¹)	25-Hydroxylation (pmol·min ⁻¹ ·mg of protein ⁻¹)
Microsomes	0.6	≤0.2	≤ 0.2	1.2
Octylamine-Sepharose	2.3	2.3	11.5	50.8
Hydroxylapatite (120 mM phosphate eluate)	3.6	9.0	38.9	328.0
O-Sepharose (nonbound fraction)	5.4	23.8	84.2	596.2
S-Sepharose (150 mM sodium acetate eluate)	13.0	102.7	468.0	3695.9

Details of the purification and incubation procedures are given in section 2.

mitochondrial cytochrome P₄₅₀ catalyzing 1α-hydroxylation, the apparently homogeneous microsomal 1a-hydroxylase recuired microsomal NADPH-cytochrome P₄₅₀ reductase for activity and was inactive in presence of mitochondrial electron transport system involving ferredoxin and ferredoxin reductase. The physiological importance of the kidney microsomal α -hydroxylase in the bioactivation of vitamin D_3 to its biologscally active hormone form, $1\alpha,25$ -dihydroxyvitamin D_3 , cannot be fully assessed at present. The kidney is the major site of α,25-dihydroxyvitamin D₃ production [5], although extrarenal 1α-hydroxylation exists [5,11]. It is generally considered that mitochondrial 1\alpha-hydroxylation is responsible for the enal 1α,25-dihydroxyvitamin D₃ production. The kidney mirosomal lα-hydroxylase studied in the present communicaion shows 1\alpha-hydroxylase activity higher or comparable to that of previously reported mitochondrial 1α -hydroxylase preparations [4,6–8]. The purified kidney microsomal 1α -hydroxylase should be sufficiently active catalytically to play a ole in $1\alpha,25$ -dihydroxyvitamin D₃ production in vivo. The daily production of $1\alpha,25$ -dihydroxyvitamin D_3 in man has been estimated to be about 0.14–0.68 μ g [20] and it might be assumed that the production in pig is of about the same order. On the basis of catalytic activity and yield of purified microomal 1α -hydroxylase it can be calculated that this 1α -hydroxlase could catalyze the formation of at least $5 \mu g/day$ in kidney.

The liver microsomal 1α-hydroxylase preparation showed he same properties as the kidney enzyme and catalyzed also 25-hydroxylation of vitamin D₃. The apparently homogeneous protein was purified according to the same procedures as decribed for microsomal vitamin D 25-hydroxylase [15] and showed the same apparent M_r as this enzyme. These findings ogether with the finding that the ratio between 1α - and 25hydroxylation was constant during purification of both the kidney and liver enzymes indicate that microsomal 1α-hydroxplation is catalyzed by the previously described microsomal vitamin D 25-hydroxylase(s) in pig kidney and liver [14,15]. The ibility of purified and recombinantly expressed mitochondrial CYP27 to catalyze both 25-hydroxylation and 1α -hydroxylaion in vitamin D bioactivation was recently reported [12]. It nay be concluded that in addition to the assumed specific cytochrome P₄₅₀ in kidney mitochondria catalyzing 1α-hydroxylation which has been partially purified [4,6–8], there are other 1α -hydroxylating cytochromes P_{450} that have now been purified to apparent homogeneity or recombinantly expressed. Their relative physiological importance in the bioactivation of vitamin D_3 remains to be established.

Acknowledgements: The author is grateful to Dr. Erik Lund for performing gas chromatography-mass spectrometry analyses of 1α ,25-dihydroxyvitamin D₃. This work was supported by the Swedish Medical Research Council (Project 03X-218).

References

- [1] Norman, A.W., Midgett, R.J., Myrtle, J.F. and Nowicki, H.G.(1971) Biochem. Biophys. Res. Commun. 42, 1082–1087.
- [2] Gray, R.W., Omdahl, J.L., Ghazarian, J.G. and DeLuca, H.F. (1972) J. Biol. Chem. 247, 7528-7532.
- [3] Ghazarian, J.B., Jefcoate, C.R., Knutson, J.C., Orme-Johnson, W.H. and DeLuca, H.F. (1974) J. Biol. Chem. 249, 3026–3033.
- [4] Saarem, K., Pedersen, J.I. and Tollersrud, S. (1978) Comp. Biochem. Physiol. 61B, 485–490.
- [5] Hollis, B.W. and Gray, R.W. (1993) in: Cytochrome P₄₅₀ (Schenkman, J.B. and Greim, H. eds.) Handbook of Experimental Pharmacology, vol. 105, pp. 677–691, Springer-Verlag, Berlin.
- [6] Hiwatashi, A., Nishii, Y. and Ichikawa, Y. (1982) Biochem. Biophys. Res. Commun. 105, 320–327.
- [7] Gray, R.W. and Ghazarian, J.G. (1989) Biochem. J. 259, 561-568.
- [8] Postlind, H. (1990) Biochem. Biophys. Res. Commun. 168, 261-266
- [9] Henry, H.L. (1992) J. Cell. Biochem. 49, 4-9.
- [10] Littledike, E.T. and Horst, R.L. (1982) Endocrinology 111, 2008-
- [11] Hollis, B.W. (1990) Proc. Natl. Acad. Sci. USA 87, 6009-6013.
- [12] Axén, E., Postlind, H., Sjöberg, H. and Wikvall, K. (1994) Proc. Natl. Acad. Sci. USA 91, 10014–10018.
- [13] Andersson, S., Davis, D.L., Dahlbäck, H., Jörnvall, H. and Russell, D.W. (1989) J. Biol. Chem. 264, 8222–8229.
- [14] Bergman, T. and Postlind, H. (1990) Biochem. J. 270, 345-350.
- [15] Axén, E., Bergman, T. and Wikvall, K. (1992) Biochem. J. 287, 725–731.
- [16] Yasukochi, Y. and Masters, B.S.S. (1976) J. Biol. Chem. 251, 5337–5344.
- [17] Wikvall, K. (1984) J. Biol. Chem. 259, 3800-3804
- [18] Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J. (1951) J. Biol. Chem. 193, 265–275.
- [19] Omura, T. and Sato, R. (1964) J. Biol. Chem. 239, 2379-2385.
- [20] Norman, A.W. (1979) in: Vitamin D; the Calcium Homeostatic Steroid Hormone, p. 404.